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Abstract

We describe how to pose straight band initial value problems for lattice
equations defined on arbitrary stencils. In finitely many directions, we arrive
at discrete Goursat problems and in the remaining directions we find Cauchy
problems. Next, we consider (s1, s2)-periodic initial value problems. In the
Goursat directions, the periodic solutions are generated by correspondences.
In the Cauchy directions, assuming the equation to be multi-linear, the periodic
solution can be obtained uniquely by iteration of a particularly simple mapping,
whose dimension is a piecewise linear function of s1, s2.

PACS numbers: 02.30.Ik, 02.30.Jr

1. Introduction

For a given nonlinear partial differential equation (PDE), say, in two independent variables

E(u, ut , ux, uxx, uxt , utt , . . .) = 0 (1)

we can consider its traveling wave solution

u(x, t) = f (ξ), ξ = x + βt. (2)

Then, the PDE (1) for function u(x, t) reduces to an ordinary differential equation (ODE)
for function f (ξ). Note that the traveling wave solution for the PDE satisfies a periodicity
condition,

u(x, t) = u(x + s1, t + s2),

with s1/s2 = −β.
Here, we study periodic solutions of partial difference equations (P�Es)

F(ul,m, ul+1,m, ul,m+1, ul+2,m, ul+1,m+1, ul,m+2, . . .) = 0. (3)

Because lattice parameters l, m take values in Z, we need integer parameters s = (s1, s2) ∈
Z × Z to impose the s-periodicity condition,

ul,m = ul+s1,m+s2 .
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In contrast to the continuous case, unless s1 and s2 are co-prime, the P�E reduces to a system
of ordinary difference equations (O�Es). In fact, we get a system of r O�Es for r functions,
where r is the greatest common divisor of |s1| and |s2|. The traveling wave interpretation is
given in section 4, where the discrete analog of (2) is given,

ul,m = vp
n , n = nl,m ∈ Z, p = pl,m ∈ Nr ,

for certain functions n, p which depend on the choice of s. Here n plays the role of β in (2)
and p distinguishes the r different functions.

Periodic reductions, for lattice equations defined on a square,

F(ul,m, ul+1,m, ul,m+1, ul+1,m+1) = 0, (4)

were performed in [11]. The authors considered cases s2 = s1 and s2 = s1 + 1. Not long after,
in [15], it was realized that such reductions provide traveling wave solutions. The authors
showed how to perform s-reduction with s = (z2,−z1), taking z1, z2 to be co-prime. They
provided a particular nice way of posing initial value problems for lattice equations defined on
a square (4). Born out of the third concluding remark in that paper, [15], a completely general
description of s-reduction, with s ∈ Z × Z, has been given recently in [13]. At present, we
display a more geometric understanding, and we show how to pose initial value problems for
general lattice equations (3).

We call an initial value problem well-posed if for generic initial values a solution exists
and is unique. If a generic initial value problem yields a finite number of values at any given
lattice point, we call it nearly well-posed.

We will prove the following. Let a multi-linear function F be defined on a finite set S of
lattice points, not lying on the same line. Then for equation F = 0 on the lattice, there are
finitely many directions of s = (s1, s2) ∈ Z × Z for which the equation admits a nearly well-
posed s-periodic initial value problem. These directions coincide with the directions of the
line-pieces in the boundary of the convex hull of S. If the direction of s is not one of these, then
F = 0 admits a well-posed s-periodic initial value problem equivalent to a finite-dimensional
mapping the dimension of which is a piecewise linear function of s1, s2.

In the case of well-posedness, the periodic solutions are uniquely determined by iteration
of single-valued mappings. Here, s-periodicity on the band of initial values implies s-
periodicity of the solution on Z × Z. In the case of nearly well-posedness, the periodic
solutions are generated by correspondences. Here we impose s-periodicity on Z × Z.

In our construction, the mappings are particularly simple as they can be obtained by
using the equation only r = gcd(s1, s2) times, and no composition of functions is involved.
To obtain explicit expressions for the correspondences, one needs to solve a system of r

equations in r unknowns. We also formulate a conjecture about the multi-valuedness of
certain correspondences, which relates to the number of fixed points of a certain mapping.

We note that from well-posed s-periodic initial value problems, one can construct non-
periodic initial value problems, of the Cauchy type, by taking the limit where r goes to infinity.
For the nearly well-posed s-periodic initial value problems, if one takes the same limit, one
has to add complementary lines of initial values. Therefore, this leads to discrete Goursat
problems.

It will be instructive to first describe these (non-periodic) initial value problems. This
will be done in geometric terms in the following section. Second, in section 3, we will impose
periodicity conditions. Then, in section 4, we will arrive at the traveling wave interpretation
of the periodic solutions. In section 5, we conclude with a hint to applications in the area of
discrete integrable systems. We provide explicit reductions of an integrable 5-point equation.
And, we show how to pose initial value problems for the quotient-difference algorithm, which
is an integrable system of equations.
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Figure 1. Seven-point sailboat stencil.

L2

L1

Figure 2. Squeezing the sailboat.

2. Initial value problems

A point s = (s1, s2) ∈ Z × Z is a direction if s1 ∈ N := {0, 1, . . .}, and s1 is co-prime with
εs2 ∈ N, where ε is the sign of s2 ∈ Z. Thus, every nonzero point s ∈ Z × Z can be written
uniquely as s = ±r ŝ, where ŝ denotes the direction of s, and r ∈ N. A line piece L has
direction ŝ if L = a + sI , for certain a, s ∈ Z × Z and interval I ⊂ R.

A stencil S is a finite set of points of Z × Z such that not all points lie on the same
line. Thinking of S as a subset of the real plane R × R, the boundary of the convex hull of
S is a closed polygonal line. We call this boundary the S-polygon, its vertices the S-extreme
points (can be proved that they belong to S), its edges S-edges and the directions of S-edges
S-directions.

Let a lattice equation on S be given. We suppose that the equation is multi-linear, at least
in the points that are on the edges of the S-polygon.

As a pedagogical example, throughout the text, we will exploit the 7-point stencil depicted
in figure 1. For this stencil the S-directions are

(1, 1), (2,−1), (1,−1), (1, 0). (5)

2.1. Well-posed Cauchy problems

We choose a point s ∈ Z × Z, whose direction is not an S-direction. Clearly, there are only
finitely many directions in which s may not be chosen.

For a sailboat equation we choose s = (3, 2). We squeeze its stencil S between two lines
with direction ŝ, denoted by L1 and L2; see figure 2. Because s is not an S-direction, squeezing
lines L1 and L2 intersect stencil S at one S-extreme point. It is plain that if initial values are
given at all lattice points between the two lines together with the values at the lattice points on
one of the two lines, say L1, then the values at the lattice points on the other line, in this case
L2, can be calculated using copies of the equation.

We can shift the lines further apart, in a parallel fashion, and are able to calculate the
values at the shifted lines. Iterating this procedure determines a solution uniquely.

3
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Figure 3. Goursat problem for sailboat equations.

Figure 4. Another Goursat problem for sailboat equations.

We now expand a little on how to shift lines further apart over the lattice. Let A be a line
through the origin with direction a. Let us shift the line in a parallel and continuous fashion
until the line intersects the lattice Z×Z non-trivially again. The question we then ask is: what
are the possible discrete translation vectors? Or, which lattice points are closest to A?

Choose c ∈ Z × Z. The component of c perpendicular to a is

c⊥ = c − a · c

a · a
· a = det

(
a

c

)
· (−a2, a1).

Hence, the distance from c to A is D(a, c)/||a||, where D : Z × Z × Z × Z �→ N is given by

D(a, c) :=
∣∣∣∣det

(
a

c

)∣∣∣∣ . (6)

As a fact from elementary number theory, since a1 and a2 are co-prime, there exist c, such that
c2a1 − c1a2 = 1. This is, after 0, the smallest value D(a, c) can acquire. Moreover, c can be
obtained from the extended Euclidean algorithm. Clearly, once a particular c has been found,
all lattice points that are closest to line A are ±c + aZ.

2.2. Well-posed Goursat problems

We could have chosen point s such that one of the lines L1 or L2, or both, would intersect
the S-polygon in an S-edge. When this happens, the initial value problem is ill-posed;
we have two options. One option is to add initial values on complementary lines, as in
figure 3. The other option is to impose periodicity on Z × Z. This will be done in the
following section.

When exactly one of the lines, say L2, intersects the S-polygon in an S-edge, we only
have to add initial values on complementary half lines attached to L2. This is the case for
sailboat equations when ŝ = (2,−1); see figure 4.
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Figure 5. (3, 2) periodic initial value problem for sailboat equations.

In general, the direction c ∈ Z × Z of the complementary lines should be chosen such
that D(ŝ, c) = 1. And, if P denotes the intersection of Li with stencil S, the number n ∈ N of
complementary half lines that should be attached to line Li is

n = maxp1,p2∈P {k : p1 − p2 = k · ŝ}.

3. Periodic initial value problems

By imposing s-periodicity with ŝ not an S-direction, we get a well-posed periodic initial value
problem. If ŝ is an S-direction, we get a nearly well-posed periodic initial value problem.

3.1. Well-posed periodic initial value problems

Imposing s-periodicity amounts to identifying points a ∼ c if and only if there exists k ∈ Z

such that a − c = k · s. We would like to know how many inequivalent lattice points are either
on L1 or in between L1 and L2. This number gives us the dimension of the s-periodic initial
value problem.

By imposing (3, 2)-periodicity the number of inequivalent initial values, cf figure 2,
becomes 8. The reader may verify this, by counting the number of black dots in the
parallelogram given in figure 5, excluding the points on the dashed lines.

In general, let d ∈ Z × Z represent a difference between two parallel lines L1, L2 with
direction ŝ, that is, let there be p1 ∈ L1 and p2 ∈ L2 such that p1 − p2 = ±d.

We can now rephrase the question: what is the number of lattice points in the parallelogram
spanned by d, s? This is the number of points p = a · d + b · s, with 0 � a, b < 1 ∈ Q. The
answer is quite appealing, it is D(s, d), with D defined by (6). The short proof would be that
the number of lattice points is equal to the area of the parallelogram. But the reader may want
to verify the statement by counting lattice points in rectangles; see figure 6.

Indeed, for the s = (3, 2) periodic initial value problem, depicted in figure 5, taking
d = (1,−2) yields D(s, d) = 8. Note that the number D(s, d) does not depend on the choice
of d. If d is a difference between L1 and L2, then the set Z of all differences is Z = {±d + ŝZ}.
Clearly, p ∈ Z implies D(s, p) = D(s, d). Also note that the number D(ŝ, d) counts the
number of discrete lines in between L1 and L2. Let r ∈ N be such that s = ±r ŝ. Then, there
are r inequivalent points on each line.

Given a well-posed s-periodic initial value problem, a particular simple way of updating
the D(s, d) initial values is to perform a shift over cs, where cs satisfies D(ŝ, cs) = 1. For
the initial value problem depicted in figure 5, we take cs = (2, 1). By shifting over cs all the
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−d2

d1 s1

s2

Figure 6. Counting lattice points in parallelograms. The number of lattice points in the
parallelogram on the left is equal to the number of lattice points in a s1 + d1 × s2 − d2 rectangle
minus the number of lattice points in a s1 ×s2 rectangle minus the number of points in a d1 ×(−d2)

rectangle plus 1.

L1

L2

Figure 7. Nearly well-posed (4, −2)-periodic initial value problem for sailboat equations.

black dots will be shifted to a point between the two lines, except for the point closest to the
dashed line, which is shifted to a point on the dashed line. This means that to write down the
corresponding mapping we only have to use the sailboat equation once. In general, one has
to use the equation r times, in order to calculate the r values at the lattice points closest to the
initial values. We note that we only need to impose s-periodicity on the band of initial values.
Due to multi-linearity, this will guarantee the s-periodicity of the solution on Z × Z.

3.2. Nearly well-posed periodic initial value problems

There is a finite number of directions where line L1 or L2 intersects the S-polygon at an
S-edge. In these cases, we get nearly well-posed periodic initial value problems by imposing
s-periodicity on Z × Z.

Let us impose s = (4,−2) periodicity and, once again, consider a sailboat equation; see
figure 7. A difference between lines L1 and L2 is d = (0, 2). Therefore, the s-periodic initial
value problem has dimension D(s, d) = 8. With cs = (1, 0) we have D(ŝ, cs) = 1. We update
to the left by shifting over −cs. At both points on L1 − cs we can determine its value uniquely
by using a single sailboat equation. On the other side, at the dashed line L2, we need to solve
a system of two sailboat equations to obtain the two values at L2.

If we were to consider (2r,−r)-reduction, with r ∈ N+ this would yield a system of r

equations in r unknowns, which can be represented as

f (x1, x2) = f (x2, x3) = · · · = f (xr−1, xr ) = f (xr , x1) = 0. (7)

Assuming the sailboat equation to be multi-linear in the points of intersection of L2 and stencil
S, then lemma 1 tells us that the correspondence that generates the (2r,−r)-periodic solution
will, generically, be two-valued.

6
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Table 1. Conjectured fixed point and orbit counts for the mapping H.

r 1 2 3 4 5 6 7 8 9 10 11 12 13 14

ar 3 5 6 9 13 20 31 49 78 125 201 324 523 845
cr 3 1 1 1 2 2 4 5 8 11 18 25 40 58

Lemma 1. Let fi(x, y), i = 1, 2, . . . , n be generic polynomials of degree 1 in x, y. Then the
system of n equations in n unknowns

f1(x1, x2) = f2(x2, x3) = · · · = fn−1(xn−1, xn) = fn(xn, x1) = 0

has two solutions.

Proof. Eliminating x2 from f1(x1, x2) = f2(x2, x3) = 0 gives us a polynomial equation
g1(x1, x3) = 0, where g1 has degree 1 in x1, x3. Similarly, eliminating x3 from g1(x1, x3) =
f3(x3, x4) = 0 yields g2(x1, x4) = 0, where g2 has degree 1 in x1, x4. Performing further
elimination of x4, . . . , xn−1 we find gn−2(x1, xn) = 0, where gn−2 has degree 1 in x1, xn. Now,
by eliminating xn from the system gn−2(x1, xn) = fn(xn, x1) = 0 we get a quadratic for x1.
So x1 can take two values. Once x1 has been fixed, the values of x2, . . . , xn are determined by
linear relations. �

In general, let P be the intersection of a line Li , with direction ŝ, and a stencil S. The
n lattice points in P can be written as p + gi · ŝ, where i = 1, 2, . . . , n, p ∈ Z × Z and the
integers gi ∈ N form (part of) an arithmetic progression with difference d ∈ N+. Let us impose
r · ŝ-periodicity. If d is not a divisor of r , we get a system of r equations in r unknowns, which
can be written as

f (xg1+k, xg2+k, . . . , xgn+k) = 0, k = 0, 1, . . . , r − 1, (8)

where xk = xl if k ≡ l mod r . Contrarily, if d divides r , we get d systems of r/d equations in
r/d unknowns, similar to the system (8), dividing r by d.

When n = 2 we can always relabel the unknowns xi �→ xσ(i), such that equation (8), with
n = 2, equals equation (7), in which case we know that there are (at most) two solutions. This
is independent of parameter r , which is proportional to the dimension. When n > 2 these
facts change drastically. Taking n = 3, we have studied the following system of r equations
in r unknowns:

f (x1, x2, x3) = f (x2, x3, x4) = · · · = f (xr−1, xr , x1) = f (xr , x1, x2) = 0, (9)

where f (x, y, z), i = 1, 2, . . . , n is a generic polynomial of degree 1 in x, y, z. We define ar

to be the number of solutions to the system (9). In fact, number ar is equal to the number of
fixed points of the rth iterate of the mapping H : (a, b) �→ (b, c), f (a, b, c) = 0. Based on
Gröbner-basis calculations in Maple we conjecture the following, cf [14, Seq. A000211].

Conjecture 2. We have a1 = 3, a2 = 5, ar = ar−1 + ar−2 − 2.

The number cr of orbits of H with length r is then given by the Möbius inversion formula

cr = 1/r
∑
d|r

μ(d)ar/d .

These integer sequences, see table 1, are almost the same as the fixed point and orbit counts
for the golden cat map [2], cf [14, Seq. A060280].
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R1

R2

R3
R4

R1

R2

R3 R4

Figure 8. Distinguished regions for sailboat equations.

3.3. On the dimension of periodic initial value problems

In this section, we show that the dimension of s-periodic initial value problems is a piecewise
linear function of s.

For a given stencil S, we distinguish pie-piece shaped regions of Z × Z, cut out by S-
direction lines through the origin. For sailboat equations, we denote the four S-directions (5)
by

ŝ1 = (1, 1), ŝ2 = (1, 0) ŝ3 = (2,−1), ŝ4 = (1,−1).

They give rise to four different regions; see figure 8. To each region Ri we may associate a
point di ∈ Z × Z as follows.

Take s ∈ Ri . Let L1 and L2 be lines with direction s, which squeeze stencil S and intersect
the S-polygon in points p1 and p2 respectively. Choose di = ±(p1 − p2). Clearly, di is a
difference between lines L1 and L2, and hence the dimension of the s-periodic initial value
problem is D(s, di ). For sailboat equations, we may take

d1 = (1,−2), d2 = (0, 2), d3 = (2, 1), d4 = (3, 0).

For s on the boundary between two regions, since the associated points are not uniquely
defined one can choose any point p1 in the intersection of L1 and S and any point p2 in the
intersection of L2 and S and take a difference, di = ±(p1 − p2). In particular, with the
boundary between Ri and Ri+1, one may associate di or di+1. These choices are all equivalent:
if d1 and d2 are two possible choices on a boundary with direction s, then d1 ± d2 = k · ŝ, for
some k ∈ Z. For example, for sailboat equations we have

d1 + d2 = ŝ2, d2 − d3 = −ŝ3, d3 − d4 = −ŝ4, d4 − d1 = 2ŝ1.

We can write down a single formula for the dimension of the s-periodic initial value
problem. Suppose that there are n distinct S-directions. These define n different regions Ri ,
which have n associated differences di , i = 1, 2, . . . , n. The dimension of the s-periodic
initial value problem is then given by the piecewise linear expression

max{D(s, di ), i = 1, 2, . . . , n}. (10)

To see this, we prove that s ∈ Rj implies max{D(s, di ), i = 1, 2, . . . , n} = D(s, dj ). Suppose
that s ∈ Rj . Then dj is a difference between two lines L1 and L2 with direction s, which
squeeze stencil S. Any other di , with i 	= j , is a difference between two points which lie
in between the two lines. Therefore, di itself fits in between the two lines and we find that
D(s, di ) � D(s, dj ), which establishes the result. For sailboat equations, the dimension of
the s-periodic solution is given by

max{|2s1|, |3s2|, |2s1 + s2|, |2s2 − s1|}.

8
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4. Discrete traveling wave reduction

In this section, we explain how the periodic solutions arise as traveling wave reductions.
To explicitly write down the D(s, d)-dimensional mappings that generate the s-periodic

solutions, it is convenient to perform a change of variables (l,m) �→ (n, p). One variable, n,
will tell us on which line with direction ŝ the point is and the other, p, will distinguish the r

inequivalent points on each line.
Let ε denote the sign of ŝ2, when ŝ2 = 0 we set ε = −1. We define

ns(a) = εdet

(
a

ŝ

)
. (11)

Thus, ns only depends on ŝ: for all k ∈ Z we have nk.ŝ(a) = nŝ(a). Also, the function
ns(a) ∈ Z is invariant under shifting a by ŝ: for all k ∈ Z we have

ns(a + k · ŝ) = ns(a).

We have built in an antisymmetry of reflections in the s1-axis: n(s1,−s2)(a) = −ns(a). And,
the new variable n increases to the right: ns(a + (1, 0)) > ns(a), unless ŝ = (1, 0). Next, we
fix a point cs ∈ Z × Z which will tell us how to update the initial values. Also we will use
cs to define the variable p. If ŝ = (1, 0), we take cs = (0, 1). If ŝ2 = ε, we take cs = (1, 0).
And otherwise, we let cs be the unique lattice point inside the parallelogram spanned by ŝ and
(1, 0), such that D(ŝ, cs) = 1. In this way, shifting over cs raises the index n by 1:

ns(a + cs) = ns(a) + 1.

Clearly, lines with direction s are shifted to the next line on the right, except when ŝ = (1, 0),
where the lines are shifted upward. Using point cs we define

ps(a) = εdet

(
cs

a

)
mod r, (12)

and we take p ∈ Nr := {0, 1, . . . , r − 1}. Function ps(a) ∈ Nq is invariant under shifting a

by cs: for all k ∈ Z we have

ps(a + k · cs) = ps(a).

The antisymmetry of reflections in the s1-axis is present: p(s1,−s2)(a) = −ps(a). And, function
p increases by 1 when shifting a in direction ŝ:

ps(a + ŝ) = ps(a) + 1.

The s-periodic traveling wave reduction is now given by

ul,m � vp
n , n = ns(l,m), p = ps(l,m),

which should be compared to (2). The lattice equation (3) reduces to the system of r O�Es,
with p = 0, 1, . . . , r − 1,

F
(
vp

n , v
p−εcs

2
n+εŝ2

, v
p+εcs

1
n−εŝ1

, v
p−2εcs

2
n+2εŝ2

, v
p−ε(cs

2−cs
1)

n+ε(ŝ2−ŝ1)
, v

p+2εcs
1

n−2εŝ1
, . . .

) = 0. (13)

Suppose that s is taken in one of the regions where one has a well-posed initial value
problem. In terms of the reduced variables, the set of initial values can be specified as{
v

p
n : n ∈ ND/q, p ∈ Nq

}
, where D is the dimension as given by equation (10). The

corresponding mapping is

vp
n �→ v

p

n+1, n ∈ ND/q−1, p ∈ Nq

v
p

D/q−1 �→ v
p

D/q, p ∈ Nq,

where v
p

D/q can be found by solving one of the equations (13), which we assumed to be linear
in order to have uniqueness.

9
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5. Applications, examples, extensions

Recently, in [1], a criterion has been given for the well-posedness of Cauchy problems for
integrable equations defined on the square, on a so-called quad-graph, that is, a planar graph
with quadrilateral faces. In contrast, we considered lattice equations not necessarily defined
on a square, which live on the regular lattice (section 2) or on regular cylindrical lattices
(sections 3 and 4). Also, for our results we did not require the equations to be integrable.
An interesting open problem would be to consider (integrable) lattice equations defined on
stencils different from the square, on non-regular quad-graphs.

The main application of our results we have in mind is in the area of discrete integrable
systems. It is thought that reductions of integrable lattice equations are integrable. A common
property of integrable lattice equations is that they possess a Lax pair. Recently, it has been
shown that their s-periodic reductions also possess a Lax pair [13]. An open question is
whether the reductions are completely integrable in the sense of Liouville–Arnold–Veselov,
i.e. whether there are sufficiently many functionally independent integrals in involution
[4, 16].

The staircase method provides integrals for mappings and correspondences that are
obtained as traveling wave reductions of integrable lattice equations that exhibit a Lax
pair. The integrals are obtained by taking the trace of powers of a monodromy matrix L,
which is an ordered product of Lax matrices along a staircase. The method was originally
developed for scalar equations on the square [11, 13, 15], but applies to more general situations
[9, 12]. In [13], it is shown that the monodromy matrix actually is one of the Lax matrices
for the reduced system of O�Es. In [8] we give a short, but general, proof of the invariance
of tr(Li ), in the spirit of the original work [15]. The proof is solely based on the existence of
s-periodic solutions and the presence of a Lax pair for the P�E. In this paper, we have shown
the existence of s-periodic solutions for any (nonzero) s ∈ Z × Z for scalar lattice equations
defined on any stencil. Therefore, we may conclude that the staircase method can be applied
to all integrable scalar lattice equations. The question whether this provides sufficiently many
integrals remains open; see [8].

5.1. Reductions of a 5-point equation

In this section, we perform different reductions for an integrable 5-point equation found in
[5], namely the 5-point equation

(ul,m − ul,m−1)(ul,m − ul−1,m−1)

(ul,m − ul,m+1)(ul,m − ul+1,m+1)
= 1,

see [5, equation (4a)], with α(ν) = 0.
The stencil on which the equation is defined is depicted in figure 9. We perform a few

different reductions, writing down explicitly the associated mapping or correspondence.
The directions of the convex hull of the stencil are (1, 2) and (1, 0). Therefore, we

distinguish two different regions, as in figure 10. The distances we associate with the different
regions are

d1 = (0, 2), d2 = (2, 2).

Hence, the dimension of the s-periodic initial value problems is given by

2max(|(s1 − s2)|, |s1|).

10
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Figure 9. A 5-point stencil.

R1

R2R1

R2

Figure 10. Distinguished regions for the 5-point stencil in figure 9.

v0
0 v0

2 v0
4

v0
1 v0

3 v0
5

v0
0 v0

2 v0
4

v0
1 v0

3 v0
5

v0
0 v0

2 v0
4

Figure 11. (−1, 2)-reduction.

• (−1, 2)-reduction. We have s = −ŝ, ŝ = (1,−2) ∈ R2 and cs = (1,−1). The dimension
is D(ŝ, d2) = 6. We change variables n = 2l + m and p ≡ 0. In figure 11, we display the
positions of the initial values

{
v0

0, v
0
1, . . . , v

0
5

}
in part of the lattice.

The mapping which generates the (−1, 2)-periodic solution is

(
v0

0, v
0
1, v

0
2, v

0
3, v

0
4, v

0
5

) �→
(

v0
1, v

0
2, v

0
3, v

0
4, v

0
5,

v0
3v

0
0 + v0

2v
0
3 − v0

2v
0
0 − v0

3v
0
4

v0
3 − v0

4

)
.

• (0, 2)-reduction. We have s = 2ŝ with ŝ = (0, 1) ∈ R2 and cs = (1, 0). The dimension is
D(ŝ, d2) = 4. We change variables n = l and p ≡ m mod 2. In figure 12, we display the
positions of the initial values

{
v0

0, v
0
1, v

1
0, v

1
1

}
in part of the lattice. The mapping which

generates the (0, 2)-periodic solution is a permutation(
v0

0, v
0
1, v

1
0, v

1
1

) �→ (
v0

1, v
0
0, v

1
1, v

1
0

)
.

11
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v0
0 v0

1

v1
0 v1

1

v0
0 v0

1

v1
0 v1

1

v0
0 v0

1

Figure 12. (0, 2)-reduction.

v0
0

v0
1

v0
0

v0
1

v0
0

Figure 13. (1, 2)-reduction.

v0
0 v0

1

v1
0 v1

1

v0
0 v0

1

v1
0 v1

1

v0
1

Figure 14. (2, 2)-reduction.

• (1, 2)-reduction. We have ŝ = (1, 2) which is on the boundary of R1 and R2. The shift
is cs = (1, 1) and the dimension is D(ŝ, d1) = D(ŝ, d2) = 2. We change variables
n = 2l − m and p ≡ 0. In figure 13, we display the positions of the initial values
{v0

0, v
0
1} in part of the lattice. In this case the equation vanishes and infinitely many

values for v0
i , i ∈ Z, may be chosen arbitrarily. This initial value problem is not nearly

well-posed.
• (2, 2)-reduction. Specifying initial values as in figure 14 we find the same permutation as

for (0,2)-reduction.

12
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v0
0 v0

1

v0
0 v0

1 v0
2 v0

3

v0
1 v0

2 v0
3

v0
3

Figure 15. (2, 1)-reduction.

v1
1 v0

1 v1
1 v0

1 v1
1

v1
0 v0

0 v1
0 v0

0 v1
0

Figure 16. (2, 0)-reduction.

v0
3 v0

4 v0
5

v0
1 v0

2 v0
3 v0

4 v0
5

v0
0 v0

1 v0
2 v0

3

v0
0 v0

1

Figure 17. (2, −1)-reduction.

• (2,1)-reduction. We specify initial values as in figure 15 which we update by shifting over
cs = (1, 0). The four-dimensional mapping is

(
v0

0, v
0
1, v

0
2, v

0
3

) �→
(

v0
1, v

0
2, v

0
3,

v0
2v

0
1 + v0

2v
0
0 − v0

2v
0
3 − v0

0v
0
1

v0
2 − v0

3

)
.

• (2,0)-reduction. We specify initial values as in figure 16 which we update by shifting over
cs = (0, 1). The four-dimensional correspondence comprises two permutations:(

v0
0, v

0
1, v

1
0, v

0
1

) �→ (
v0

1, v
0
0, v

1
1, v

1
0

)
(
v0

0, v
0
1, v

1
0, v

0
1

) �→ (
v0

1, v
1
0, v

1
1, v

0
0

)
.

• (2,-1)-reduction. We specify initial values as in figure 17 which we update by shifting
over cs = (0, 1). The six-dimensional mapping is

(
v0

0, v
0
1, v

0
2, v

0
3, v

0
4, v

0
5

) �→
(

v0
1, v

0
2, v

0
3, v

0
4, v

0
5,

v0
3v

0
0 + v0

1v
0
3 − v0

1v
0
0 − v0

3v
0
5

v0
3 − v0

5

)
.
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v0
1 v0

2 v0
3

v1
0 v1

1 v1
2 v1

3

v0
0 v0

1 v0
2 v0

3

v1
0 v1

1 v1
2

v0
0 v0

1

Figure 18. (2, −2)-reduction.

e e

e e

q q

q q

Figure 19. The stencil of the QD-system.

• (2,-2)-reduction. We specify initial values as in figure 18 which we update by shifting
over cs = (0, 1). The eight-dimensional mapping is

(v0
0, v

0
1, v

0
2, v

0
3, v

1
0, v

1
1, v

1
2, v

1
3) �→

(
v0

1, v
0
2, v

0
3,

v1
2v

0
0 + v0

1v
1
2 − v0

1v
0
0 − v0

3v
1
2

v1
2 − v0

3

,

v1
1, v

1
2, v

1
3,

v0
2v

1
0 + v1

1v
0
2 − v1

1v
1
0 − v1

3v
0
2

v0
2 − v1

3

)
.

Because we have considered low-dimensional periodic reductions, in a few cases,
s ∈ {(0, 2), (1, 2), (2, 2), (2, 0)}, the mappings/correspondences obtained are fairly trivial.
This has to do with symmetries of the particular equation we considered. If we would
consider s = ±r ŝ with larger r ∈ N, we would find non-trivial mappings/correspondences.

5.2. Reductions of QD-type systems

Now that we know how to pose initial values for scalar equations, the question arises whether
something similar can be done for systems of equations. Here, we will present an example
where this is the case indeed. Note that also for integrable systems the staircase method does
provide integrals as long as there is a Lax pair and a well-posed (or nearly well-posed) initial
value problem.

The quotient-difference (QD) algorithm of Rutishauser [17], see for example
[10, equations (7), (8)],

el,m+1 + ql+1,m+1 = ql+1,m + el+1,m

el,m+1ql,m+1 = ql+1,mel,m,
(14)

is used to construct continued fractions whose convergents form ordered sequences in a normal
Padé table [6], and to find the zeros of a polynomial [7]. It is an integrable two-component
equation defined on the stencil as depicted in figure 19. Equation (14) is also known as the
discrete time Toda molecule equation [18, 19].

14
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R1

R2

R3R4
R1

R2

R3 R4

Figure 20. Distinguished regions for the QD-stencil.

We will denote the s-reduced fields with the same symbols, that is, we write (e, q)l,m �
(e, q)

p
n , with n = ns(l,m) and p = ps(l,m). We distinguish four regions as in figure 20. For

each region, we will describe how to pose particular simple well-posed initial value problems.
To write down the generating mappings, one has to calculate re-values and rq-values, where
s = ±r ŝ.

Proposition 3. A multi-linear equation of QD-type admits a well-posed s-periodic initial
value problem if ŝ is not equal to (1, 0) or (1,−2).

(i) When s ∈ R1 or ŝ = (0, 1), the set
{
e
p
n , q

p
n : n ∈ Nŝ1+ŝ2 , p ∈ Nr

}
provides a well-posed

initial value problem of dimension 2|s1 + s2|.
(ii) When s ∈ R2 or ŝ = (1,−1), the set

{
e
p
n , q

p
m : n ∈ Nŝ1 ,m + ŝ2 ∈ Nŝ1 , p ∈ Nr

}
provides a

well-posed initial value problem of dimension 2|s1|.
(iii) When s ∈ R3, the set

{
e
p
n , q

p
m : n ∈ Nŝ1 ,m − ŝ1 ∈ Nŝ1 , p ∈ Nr

}
provides a well-posed

initial value problem of dimension 2|s1|.
(iv) When s ∈ R4, the set

{
e
p
n , q

p
m : n ∈ N−ŝ1−ŝ2 ,m − ŝ1 ∈ N−ŝ1−ŝ2 , p ∈ Nr

}
provides a

well-posed initial value problem of dimension 2|s1 − s2|.
Proof. Any multi-linear system that is defined on the stencil in figure 19 can be written as
fl,m = gl,m = 0, where

fl,m = f (el,m+1, el+1,m, ql+1,m, ql+1,m+1), gl,m = g(el,m, el,m+1, ql+1,m, ql,m+1).

Performing the reduction we get f
p
n = g

p
n = 0, with

f p
n = f

(
e
p+εcs

1
n−εŝ1

, e
p−εcs

2
n+εŝ2

, q
p−εcs

2
n+εŝ2

, q
p−ε(cs

2−cs
1)

n+ε(ŝ2−ŝ1)

)
, gp

n = g
(
ep
n , e

p+εcs
1

n−εŝ1
, q

p−εcs
2

n+εŝ2
, q

p+εcs
1

n−εŝ1

)
.

(i) We have ε = 1. If s ∈ R1 then ŝ1, ŝ2 ∈ N. We have to show that one can calculate
(e, q)

p

ŝ1+ŝ2
. Indeed, we can calculate q

p

ŝ1+ŝ2
from g

p+cs
2

ŝ1
= 0, after which e

p

ŝ1+ŝ2
is determined

by solving f
p+cs

2
ŝ1

= 0.

(ii) We have ε = −1, and 0 < −ŝ2 � ŝ1. We can calculate e
p

ŝ1
from g

p+cs
1

0 = 0 and q
p

ŝ1−ŝ2

from f
p+cs

1−cs
2

0 = 0.

(iii) We have ε = −1, and ŝ1 < −ŝ2 < 2ŝ1. We can calculate e
p

ŝ1
from g

p+cs
1

0 = 0 and q
p

2ŝ1

from f
p+cs

1−cs
2

ŝ1+ŝ2
= 0.

(iv) We have ε = −1, and 0 < 2ŝ1 < −ŝ2. We can calculate q
p

−ŝ2
from g

p−cs
2

0 =
0 and e

p

−ŝ1−ŝ2
from f

p−cs
2

−ŝ1
= 0. �

One expects correspondences instead of mappings when ŝ equals (1, 0) or (1,−2). In [8]
we provide examples of one-parameter families of reductions of the QD-system (14), together
with a sufficient number of integrals for the mappings and correspondences.
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